Extensin arabinoside chain length is modulated in elongating cotton fibre
نویسندگان
چکیده
منابع مشابه
Glycoproteome of Elongating Cotton Fiber Cells*
Cotton ovule epidermal cell differentiation into long fibers primarily depends on wall-oriented processes such as loosening, elongation, remodeling, and maturation. Such processes are governed by cell wall bound structural proteins and interacting carbohydrate active enzymes. Glycosylation plays a major role in the structural, functional, and localization aspects of the cell wall and extracellu...
متن کاملFibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum)
High-quality cotton fibre equates to a more comfortable textile. Fibre length is an important index of fibre quality. Hydrogen peroxide (H2O2) acts as a signalling molecule in the regulation of fibre elongation. Results from in vitro ovule culture suggest that the alteration of fibre cell H2O2 levels affects fibre development. Ascorbate peroxidase (APX) is an important reactive oxygen species (...
متن کاملDelineating the glycoproteome of elongating cotton fiber cells
The data presented here delineates the glycoproteome component in the elongating cotton fiber cells attained using complementary proteomic approaches followed by protein and N-linked glycosylation site identification (Kumar et al., 2013) [1]. Utilizing species specific protein sequence databases in proteomic approaches often leads to additional information that may not be obtained using cross-s...
متن کاملBody weight is modulated by levels of full-length huntingtin.
Huntington disease is an adult-onset neurodegenerative disorder that is caused by the expansion of a polyglutamine tract within the Huntingtin (htt) protein. Wild-type htt has been shown to be involved in transcription, transport and cell survival. Here, we demonstrate that increased expression of full-length wild-type htt in mice is associated with a dose-dependent increase in body weight whic...
متن کاملCotton KNL1, encoding a class II KNOX transcription factor, is involved in regulation of fibre development
In this study, the GhKNL1 (KNOTTED1-LIKE) gene, encoding a classical class II KNOX protein was identified in cotton (Gossypium hirsutum). GhKNL1 was preferentially expressed in developing fibres at the stage of secondary cell wall (SCW) biosynthesis. GhKNL1 was localized in the cell nucleus, and could interact with GhOFP4, as well as AtOFP1, AtOFP4, and AtMYB75. However, GhKNL1 lacked transcrip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Cell Surface
سال: 2019
ISSN: 2468-2330
DOI: 10.1016/j.tcsw.2019.100033